

Tetrahedron Letters 41 (2000) 169-173

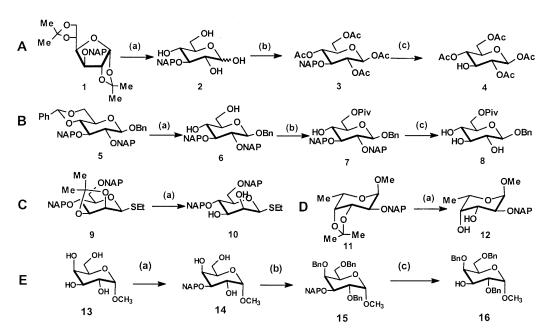
TETRAHEDRON LETTERS

Use of 1,2-dichloro 4,5-dicyanoquinone (DDQ) for cleavage of the 2-naphthylmethyl (NAP) group

Jie Xia, Saeed A. Abbas, Robert D. Locke, Conrad F. Piskorz, James L. Alderfer and Khushi L. Matta *

Molecular & Cellular Biophysics, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA

Received 6 August 1999; accepted 22 October 1999


Abstract

The 2-naphthylmethyl (NAP) group is a versatile group for protection of hydroxyl functions. It is stable to 4% TFA in CHCl₃, hot 80% HOAc–H₂O, SnCl₂–AgOTf and HCl–EtOH, but it can readily be removed with DDQ in CH₂Cl₂. © 1999 Elsevier Science Ltd. All rights reserved.

Over the past decade, we have witnessed tremendous progress in the synthesis of complex carbohydrates.¹ A wide variety of glycosyl donors carrying different functionalities at their anomeric centers, for example, thio,² fluoride,³ imidate,⁴ sulfoxide,⁵ and pentenyl, ⁶ together with an array of highly efficient catalysts¹ have proven to be the driving force behind such rapid and sustained progress in saccharide synthesis. At the same time, the availability of diverse protection for hydroxy groups also played an important role,⁷ particularly during sequential syntheses of both linear and branched higher saccharides. Nonetheless, there is always the need for novel protecting groups for hydroxy functions that are compatible with anticipated reaction conditions. The NAP group was recently introduced by Esko et al.^{8a} and Spencer et al.^{8b} as a protecting group for polyhydroxy systems. Therefore, it was of interest to further explore the utility of the NAP group in the synthesis of target oligosaccharide structures. Interestingly, the NAP group, unlike its *p*-methoxybenzyl (PMB) counterpart which can be cleaved in hot acetic acid⁹, was remarkably stable under those conditions usually employed for acetal cleavage. Alkylation¹⁰ of diacetone glucose with naphthyl bromide (NAPBr) gave the 3-O-NAP derivative 1, which upon treatment with HCl in ethanol¹¹ provided 3-O-NAP glucose 2 in good yield. The latter compound on acetylation gave **3**. However, when 1,2:5,6-di-O-isopropylidene-3-O-PMB- α -D-glucose was similarly treated, its PMB protecting group was partially cleaved. Similarly, compound 12 was obtained by treatment of compound 11 with a 4% solution of TFA in CHCl₃. By contrast, the PMB protecting group was cleaved with a 0.5% solution of TFA in dichloromethane (Table 1).^{12,13}

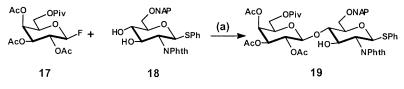
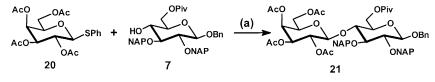
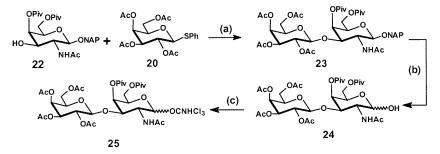

^{*} Corresponding author.

Table 1 Demonstration of NAP removal by DDQ


Reagents and conditions: **A**: a) HCI (0.8M)-EtOH, 55 °C 4 h ; b) Ac₂O-pyridine (1:1), 100 °C, 5 min, rt, 16 h, 60-70% ; c) DDQ (3.0eq), CH₂Cl₂ -MeOH (4:1)-H₂O (trace), 4 h, 87%. **B**: a) 60% HOAc, 70 °C, 1.5 h, 80% ; b) PivCl-pyridine, 0 °C - rt, 12 h, 80%; c) DDQ (3.0eq), CH₂Cl₂-MeOH (4:1)-H₂O (trace), rt, 3.5 h, 88%. **C**: a) 60% HOAc, 60-65 °C, 1.5 h, 70%. **D**: a) TFA (4%) in CHCl₃, rt, 2 h, 75%; **E**: a) Bu₂SnO-benzene, refluxing, 4 h, then NAPBr, n-Bu₄NI, 80 -85 °C, 16 - 18 h, 93%; b) KOH, 18-crown-6, THF, rt, 30 - 40 min, then, BnBr, rt, 12 h, 63%c) DDQ (3.0 eq), CH₂Cl₂-MeOH (4:1), rt, 2 h, 80%.

The NAP group readily undergoes oxidative cleavage under conditions analogous to those employed for the removal of PMB.¹⁴ Removal of NAP from **3** provided the known¹¹ 1,2,4,6-tetra-*O*-acetyl- β -D-glucopyranose **4**. Example **E** represents a facile procedure for the preparation of methyl 2,4,6-tri-*O*-benzyl- α -D-galactopyranoside **16**. It is noteworthy that the NAP group was stable under glycosylation conditions thus far examined by us. Recently, Wong and co-worker¹⁵ reported that the PMB protecting group was cleaved in the presence of AgOTf. However, compound **17** was coupled with phenyl 6-*O*-naphthylmethyl-2-deoxy-2-phthalimido-1-thio- β -D-glucopyranoside **18** in the presence of SnCl₂-AgOTf as catalyst to give disaccharide **19** (Scheme 1). Similarly, phenyl 2,3,4,6-tetra-*O*-acetyl-1thio-galactopyranoside **20** on reaction with acceptor **7** provided the disaccharide derivative **21** (Scheme 2). Reaction of galactosaminide **22** with thioglycosyl donor **20** gave **23** in fairly good yield.


Scheme 1. (a) SnCl₂-AgoTf/CH₂Cl₂-toluene, -15°C to 0°C, N₂, 12 h, 74%

On removal of its anomeric NAP group, compound 23 gave 24 which has recently been reported as

Scheme 2. (a) NIS-TfOH (cat)/CH₂Cl₂, 4A-MS, -40°C to 25°C, 1 h, 67%

a precursor for glycosyl donor 25 that was utilized for the synthesis of oligosaccharides containing the Gal β 1 \rightarrow 3GalNAc β -linkage (Scheme 3).¹⁶

Scheme 3. (a) NIS-TfOH/CH₂Cl₂, 4A-MS, -50°C, 2 h, 75%; (b) DDQ (3.0 equiv.)/CH₂Cl₂-MeOH (9:1), rt, 4 h, 76%; (c) Cl₃CN/DBU/CH₂Cl₂, rt, 3.5-4 h, 83%

The facile method for selective removal of the NAP group under such mild conditions is likely to encourage the use of this protecting group in synthetic carbohydrate chemistry.

1. Experimental

Typical experiment: Compound **15** (15.3 g, 25.0 mmol) in dichloromethane–methanol (150 ml, 4:1) was treated with DDQ (16.5 g, 73.3 mmol). The mixture was stirred at rt and the progress of reaction was monitored by TLC. After 2 h, when TLC showed that only a trace of **15** was detectable, the mixture was concentrated and the residue was taken up in dichloromethane. The solution was washed with aqueous NaHCO₃ (three times) and water, dried and concentrated. The concentrate was applied to a column of silica gel and eluted with hexane:ethyl acetate (1:1) to give compound **16** (9.5 g, 80%) as an oil.

The selective physical data for **1**, **3**, **7**, **15**, **16**, **18**, **19** and **21**. The structural assignment of **19** and **21** was based on 2D ¹H–¹H DQF-COSY and 2D ROESY spectroscopy. Compound **1**: ¹H NMR (CDCl₃, 400 MHz) δ 7.83–7.79 (m, 4H, ArH), 7.48–7.45 (m, 3H, ArH), 5.93–5.92 (d, 1H, $J_{1,2}$ =3.7 Hz, H-1), 4.83–4.80 (dd, 2H, J_{gem} =12.1 Hz, OCH₂C₁₀H₇, ABq), 4.63–4.61 (d, 1H, J=3.6 Hz), 4.51–4.35 (m, 1H), 4.20–4.00 (m, 4H), 1.49 (s, 3H, CH₃), 1.43 (s, 3H, CH₃), 1.39 (s, 3H, CH₃), 1.31 (s, 3H, CH₃); ¹³C NMR (CDCl₃, 100.6 MHz) δ 135.31, 133.46, 133.28, 128.40, 128.07, 127.90, 126.66, 126.35, 126.18, 125.84, 112.02, 109.24, 105.55 (C-1), 82.94, 81.90, 81.61, 72.76, 72.67, 67.67, 27.07 (CH₃), 27.03 (CH₃), 26.47 (CH₃), 25.69 (CH₃). Anal. calcd for C₂₃H₂₈O₆: C, 68.98, H, 7.05. Found: C, 68.71, H, 6.93. Compound **3**: (α + β): ¹H NMR (CDCl₃, 400 MHz) δ 7.82–7.80 (m, 6H, ArH), 7.72–7.68 (m, 2H, ArH), 7.52–7.44 (m, 4H, ArH), 7.40–7.32 (m, 2H, ArH), 6.33–6.32 (d, 1H, $J_{1,2}$ =3.5 Hz, H-1, α -form), 5.67–5.65 (d, 1H, $J_{1,2}$ =8.3 Hz, H-1, β -form), 5.25–5.09 (m, 4H), 4.88–4.78 (m, 3H, OCH₂C₁₀H₇), 4.25–4.19 (m, 2H), 4.18–3.99 (m, 4H), 3.84–3.78 (t, 1H, J=8.9 Hz), 3.78–3.72 (dq, 1H), 2.16 (s, 3H, Ac), 2.09 (s, 3H, Ac), 2.08 (s, 3H, Ac), 2.07 (s, 3H, Ac), 1.97 (s, 3H, Ac), 1.93 (s, 6H, 2Ac), 1.92 (s, 3H, Ac); ¹³C NMR (CDCl₃, 100.6 MHz) δ 170.91 (C=O), 170.88 (C=O), 169.76 (C=O), 169.46 (C=O), 169.38 (C=O), 169.26 (C=O), 168.93 (C=O), 135.60, 135.22, 133.43, 133.41, 133.21, 128.45, 128.45, 128.45, 128.41, 128.45, 128.4

128.38, 128.09, 128.02, 127.86, 126.73, 126.47, 126.37, 126.31, 126.25, 125.82, 125.64, 92.22, 89.72, 80.20, 77.23, 74.99, 74.46, 73.23, 71.83, 71.77, 70.50, 69.34, (2C), 62.02 (2C), 21.05 (Ac), 21.03 (Ac), 20.89 (Ac), 20.85 (Ac), 20.77 (Ac). Anal. calcd for C₂₅H₂₈O₁₀: C, 61.47, H, 5.78. Found: C, 61.43, H, 5.75. Compound 7: ¹H NMR (CDCl₃, 400 MHz) δ 7.90–7.70 (m, 8H, ArH), 7.50–7.20 (m, 11H, ArH), 5.20–5.10 (dd, 2H, OCH₂Ar), 5.00–4.90 (m, 3H, OCH₂Ar), 4.71–4.68 (d, 1H, J_{gem}=11.9 Hz, OCH₂Ar), 4.59–4.57 (d, 1H, *J*_{1,2}=7.0 Hz, H-1), 4.40–4.30 (m, 2H), 3.56–3.49 (m, 4H), 1.25 (s, 9H, *t*-Bu); ¹³C NMR $(CDCl_3, 100.6 \text{ MHz}) \delta 174.30 (C=O), 136.06, 136.02, 128.71, 128.64, 128.34, 128.30, 128.15, 127.92,$ 127.89, 127.04, 127.02, 126.43, 126.35, 126.24, 126.19, 126.08, 126.03, 102.63 (C-1), 83.99, 82.07, 75.65, 75.61, 75.02, 73.89, 71.22, 70.61, 70.56, 63.66, 27.45 (CH₃). Anal. calcd for C₄₀H₄₂O₇: C, 75.69, H, 6.67. Found: C, 75.52, H, 6.60. Compound **11**: ¹H NMR (CDCl₃, 400 MHz) δ 7.90–7.70 (m, 4H, ArH), 7.60–7.40 (m, 3H, ArH), 4.99–4.96 (d, 1H, J_{gem}=12.5 Hz, OCH_AC₁₀H₇, ABq), 4.90–4.86 (d, 1H, J_{gem}=13.2 Hz, OCH_BC₁₀H₇, ABq), 4.65–4.64 (d, 1H, J_{1.2}=3.9 Hz, H-1), 4.37–4.34 (dd, 1H), 4.11–4.00 (m, 3H), 3.57–3.55 (dd, 1H), 3.57 (s, 3H, OCH₃), 1.38 (s, 3H, CH₃), 1.34 (s, 3H, CH₃), 1.31–1.29 (d, 3H, J=6.7 Hz, CH₃); ¹³C NMR (CDCl₃, 100.6 MHz) δ 135.57, 133.03, 132.89, 127.89, 127.93, 127.63, 127.45, 126.60, 125.85, 125.74, 125.63, 108.55 (ketal carbon), 98.21 (C-1), 76.12, 75.99, 75.91, 72.25, 62.67, 55.24, 28.00 (CH₃), 26.21 (CH₃), 16.06 (CH₃). Compound **12**: ¹H NMR (CDCl₃, 400 MHz) δ 7.88-7.80 (m, 4H, ArH), 7.56-7.40 (m, 3H, ArH), 5.00-4.70 (dd, 2H, OCH₂C₁₀H₇), 4.63-4.62 (d, 1H, J_{1,2}=3.6 Hz, H-1), 4.00–3.80 (m, 4H), 3.80–3.65 (m, 2H), 3.33 (s, 3H, OCH₃), 1.25–1.20 (d, 3H, J=6.7 Hz, CH₃); ¹³C NMR (CDCl₃, 100.6 MHz) δ 135.44, 133.00, 132.86, 127.95, 127.60, 127.35, 126.68, 125.90, 125.73, 125.71, 98.35, 76.31, 72.94, 71.80, 69.28, 65.33, 54.88, 15.65 (CH₃). Compound 15: ¹H NMR (CDCl₃, 400 MHz) δ 7.81–7.61 (m, 7H, ArH), 7.52–7.20 (m, 15H, ArH), 5.00–4.94 (d, 1H, J_{gem}=12.4 Hz, OCHAr), 4.94–4.80 (dd, 2H, OCH₂Ar), 4.80–4.60 (dd, 2H, OCH₂Ar), 4.56–4.50 (d, 1H, J_{gem}=12.6 Hz, OCHAr), 4.50–4.44 (dd, 2H, OCH₂Ar), 4.06–3.86 (m, 4H), 3.64–3.50 (m, 3H), 3.34 (s, 3H, OCH₃); ¹³C NMR (CDCl₃, 100.6 MHz) δ 133.50, 133.10, 128.55, 128.50, 128.38, 128.36, 128.25, 128.23, 128.08, 127.91, 127.85, 127.72, 126.30, 126.20, 126.11, 125.96, 125.87, 98.97, 79.21, 76.91, 75.50, 74.98, 73.69, 73.66, 73.56, 69.47, 69.29, 55.51. Anal calcd for C₃₉H₃₈O₆: C, 77.45, H, 6.67. Found: C, 77.37, H, 6.39. Compound 16: ¹H NMR (CDCl₃, 400 MHz) δ 7.40–7.20 (m, 15H, ArH), 4.86-4.76 (dd, 1H), 4.74-4.56 (m, 4H, 2OCH₂Ph), 4.58-4.36 (dd, 2H, OCH₂Ph), 4.10-4.00 (m, 1H), 4.00-3.90 (m, 2H), 3.85-3.75 (m, 1H), 3.60-3.50 (m, 2H), 3.34 (s, 3H, OCH₃), 2.40-2.30 (br, 1H, OH); 13 C NMR (CDCl₃, 100.6 MHz) δ 138.75, 138.39, 138.19, 128.69, 128.58, 128.55, 128.34, 128.32, 128.16, 127.90, 98.21 (C-1), 77.61, 76.90, 75.33, 73.65, 73.14, 70.48, 69.32, 69.26, 55.54. Compound **18**: ¹H NMR (CDCl₃, 400 MHz) δ 7.85–7.75 (m, 4H, ArH), 7.37–7.35 (m, 5H, ArH), 7.25–7.24 (m, 7H, ArH), 5.64–5.61 (d, 1H, J_{1,2}=10.4 Hz, H-1), 4.78–4.60 (d, 1H, J_{gem}=12.4 Hz, OCHC₁₀H₇, ABq), 4.60-4.54 (d, 1H, J_{gem}=12.6 Hz, OCHC₁₀H₇, ABq), 4.26-4.24 (t, 1H, J=8.4 Hz, H-3), 4.15-4.13 (t, 1H, J=10.8 Hz, H-2), 3.90-3.87 (dd, 1H, J=11.6, 3.6 Hz, H-6a,), 3.81-3.80 (dd, 1H, J=11.6, 3.6 Hz, H-6b), 3.54–3.52 (m, 2H, H-4, H-5); ¹³C NMR (CDCl₃, 100.6 MHz) δ 135.49, 134.27, 133.41, 133.16, 132.66, 132.32, 133.22, 131.72, 129.01, 128.91, 128.35, 128.10, 127.84, 126.63, 126.25, 126.03, 125.87, 83.73 (C-1), 78.96, 73.79, 72.92, 72.72, 70.10, 55.79. Anal. calcd for C₃₁H₂₇O₆NS: C, 68.74, H, 5.02, N, 2.59, S, 5.92. Found: C, 68.61, H, 5.11, N, 2.37, S, 6.08. Compound **19**: ¹H NMR (CDCl₃, 400 MHz) δ 7.86–7.80 (m, 6H, ArH), 7.68–7.64 (m, 2H, ArH), 7.52–7.40 (m, 5H, ArH), 7.28–7.16 (m, 3H, ArH), 5.65–5.63 (d, 1H, J₁ 2=10.4 Hz, H-1), 5.32–5.31 (d, 1H, J=2.0 Hz, H'-4), 5.20–5.16 (t, 1H, J=10.0, 8.8 Hz, H'-2), 4.94–4.90 (dd, 1H, H'-3), 4.89–4.86 (d, 1H, J=12.0 Hz, OCH_AC₁₀H₇, ABq), 4.72–4.69 (d, 1H, J=12.0 Hz, OCH_BC₁₀H₇, ABq), 4.53–4.51 (d, 1H, J=8.0 Hz), 4.47–4.42 (t, 1H), 4.05–4.03 (m, 4H), 3.87-3.71 (m, 4H), 2.14-2.10 (s, 3H, Ac), 1.96 (s, 3H, Ac), 1.94 (2s, 6H, 2Ac); ¹³C NMR (CDCl₃, 100.6 Hz) δ 178.50 (C=O), 170.50 (C=O), 170.00 (C=O), 169.50 (C=O), 169.20 (C=O), 134.50, 132.75, 129.00, 128.50, 128.20, 128.00, 127.80, 126.58, 126.30, 126.00, 123.58, 123.50, 100.50, 83.50, 81.00,

79.20, 72.00, 70.80, 70.20 (2C), 69.50, 69.00, 68.50, 60.50, 58.50, 20.68 (Ac), 20.62 (Ac), 20.35 (Ac), 20.40 (Ac). Anal. calcd for C₄₅H₄₅O₁₅NS: C, 68.54, H, 5.10, N, 2.59, S, 5.96. Found: C, 68.61, H, 5.11, N, 2.37, S, 6.08. Compound **21**: ¹H NMR (CDCl₃, 400 MHz) δ 7.82–6.80 (m, 19H, ArH), 5.28–5.27 (d, 1H, *J*=2.7 Hz, H'-4), 5.24–5.18 (dd, 1H, H'-2), 5.16–5.00 (m, 3H, OCH₂Ph, OCHC₁₀H₇), 4.96–4.88 (d, 2H, H'-3, *J*_{gem}=12.4 Hz, OCHC₁₀H₇), 4.88–4.80 (d, 1H, *J*_{gem}=12.6 Hz, OCHC₁₀H₇), 4.76–4.72 (d, 1H, *J*_{1,2}=7.5 Hz, H'-1), 4.68–4.64 (d, 1H, *J*_{gem}=12.2 Hz, OCHC₁₀H₇), 4.58–4.48 (m, 2H, H-1, H-6b), 4.60–4.50 (dd, 1H, H-6a), 4.20–3.98 (dd, 1H, H'-6b), 3.90–3.78 (m, 2H, H-4, H'-6a), 3.74–3.62 (m, 2H, H-3, H'-5), 3.60–3.50 (m, 2H, H-5, H-2), 2.09 (s, 3H, Ac), 2.05 (s, 3H, Ac), 1.95 (s, 3H, Ac), 1.84 (s, 3H, Ac), 1.25 (s, 9H, *t*-Bu); ¹³C NMR (CDCl₃, 100.6 Hz) δ 179.11 (C=O), 171.31 (C=O), 171.22 (C=O), 171.19 (C=O), 170.63 (C=O), 137.63, 134.52, 131.45, 129.74, 129.70, 129.32, 129.30, 129.20, 129.18, 129.14, 128.94, 128.86, 128.49, 128.42, 127.84, 127.70, 127.46, 127.42, 127.40, 127.35, 127.28, 127.16, 127.02, 126.94, 126.88, 126.82, 102.16, 101.12, 83.74, 83.65, 79.46, 76.29, 76.05, 74.07, 72.35, 72.29, 72.16, 70.94, 68.03, 67.90, 61.93, 29.80, 28.53 (3CH₃), 21.95 (Ac), 21.77 (Ac), 21.76 (Ac), 21.68 (Ac).

Acknowledgements

This work was supported by NIH grants CA35329 (K.L.M.) and CA16056 (RPCI). The authors would like to thank the Chairman of our department, Dr. Sek Wen Hui, for his encouragement.

References

- (a) Paulsen, H. Angew. Chem., Int. Ed. Engl. 1990, 29, 823; (b) Schmidt, R. R.; Kinzy, W. Adv. Carbohydr. Chem. Biochem. 1990, 50, 21; (c) Shimanel, E. E.; McGarvey, G. J.; Jablonowski, J. A.; Wong, C.-H. Chem. Rev. 1998, 98, 833.
- (a) Fuegedi, P.; Garegg, P. J.; Lonn, H.; Norberg, T. *Glycoconjugate J.* 1987, *4*, 97; (b) Veeneman, G. H.; Van Leeuwen, S. H.; Van Boom, J. H. *Tetrahedron Lett.* 1990, *31*, 1331.
- 3. Mukaiyama, T.; Murai, Y.; Shoda, S. Chem. Lett. 1981, 431.
- 4. Schmidt, R. R.; Michel, J. Angew. Chem., Int. Ed. Engl. 1980, 19, 731.
- 5. Kahne, D.; Walker, S.; Cheng, Y.; Engen, D. V. J. Am. Chem. Soc. 1989, 111, 6881.
- 6. Konradsson, P.; Udodong, U. E.; Fraser-Reid, B. Tetrahedron Lett. 1990, 31, 4313.
- 7. (a) Green, T. W.; Wuts, P. G. *Protective Groups in Organic Synthesis*, 2nd ed; Wiley-Interscience: New York, 1991; p. 53;
 (b) McCormick, J.; Li, Y.; McCormick, K.; Duynstee, H. L. I.; van Engen, A. K.; van der Marel, G. A.; Ganem, B.; van Boom, J. H.; Meinwald, J. J Am. Chem. Soc. 1999, 121, 5661.
- (a) Sarkar, A. K.; Rostand, K. S.; Jain, R. K.; Matta, K. L.; Esko, J. D. J. Biol. Chem. 1997, 272, 25608; (b) Gaunt, M. J.; Yu, J.; Spencer, J. B. J. Org. Chem. 1998, 63, 4172.
- 9. (a) Hodgetts, K. J.; Wallace, T. W. Synth. Commun. 1994, 24, 1151; (b) Misra, A. K.; Mukherjee, I.; Mukhopadhyay, B.; Roy, N. Indian J. Chem. 1999, 38B, 90.
- 10. Bessodes, M.; Shamsazar, J.; Antonakis, K. Synthesis 1988, 560.
- 11. Koeppen, B. H. Carbohydr. Res. 1972, 24 154.
- (a) Jain, R. K.; Matta, K. L. *Tetrahedron Lett.* 1992, *31*, 4325; (b) Bouzide, A.; Sauve, G. *Tetrahedron Lett.* 1999, *40*, 2883; (c) Yan, L.; Kane, D. *Synlett* 1995, 523
- In a preliminary experiment, methyl 3-O-(4-methoxybenzyl)-α-D-galactopyranoside 26 and its 3-O-naphthylmethyl analog
 were both subjected to acetolysis conditions (Ac₂O-0.8% concd H₂SO₄). After 12 h at rt, the PMB group of 26 was completely cleaved, where the NAP group in 27 suffered only partial cleavage.
- 14. Oikawa, Y.; Yoshioka, T.; Yonemitsu, O. Tetrahedron Lett. 1982, 23, 885.
- 15. Huang, H.; Wong, C.-H. J. Org. Chem. 1995, 60, 3100.
- Bernardi, A.; Boschin, G.; Checchia, A.; Lattanzio, M.; Manzoni, L.; Potenza, D.; Scolastico, C. Eur. J. Org. Chem. 1999, 1311.